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Supersonic boundary-layer receptivity to different types of free-stream disturbance is
studied for a Mach 4.5 boundary-layer flow over a flat plate by using the approaches
of both direct numerical simulation and linear stability theory. This paper is Part 3
of a three-part study of the receptivity of supersonic boundary layers to free-stream
disturbances. The present paper investigates receptivity to four types of different free-
stream disturbances, i.e. slow and fast acoustic waves, entropy waves, and vorticity
waves. A high-order shock-fitting scheme is used in the numerical simulation in order
to accurately account for the effects of interactions between free-stream disturbance
waves and the oblique shock wave. Numerical results on the generation of fast acoustic
waves by free-stream entropy waves or vorticity waves are compared with those of
a linear theory. Good agreement is obtained in both wave angles and amplitudes
immediately behind the bow shock. It is found that the second-mode receptivity to
free-stream slow acoustic waves is several times stronger than that to free-stream
fast acoustic waves. This is because free-stream slow acoustic waves can directly
induce and interact with the first and second Mack modes, while free-stream fast
acoustic waves cannot. Instead, the free-stream fast acoustic waves can only induce
and interact with stable mode I waves, which in turn induce unstable Mack modes. In
the cases of receptivity to free-stream entropy waves and vorticity waves, it is found
that the oblique shock wave created by the displacement of the boundary layer plays
an important role because boundary-layer disturbances are mainly induced by fast
acoustic waves generated behind the shock by free-stream forcing waves. As a result,
mechanisms of the receptivity to free-stream entropy and vorticity waves are very
similar to those of the receptivity to free-stream fast acoustic waves.

1. Introduction
Laminar–turbulent transition of hypersonic boundary layers can significantly affect

skin friction and surface heating rates because turbulent flow generates much higher
shear forces and heating rates. Thus, the accurate prediction of boundary-layer
transition is a critical part of the design of the thermal protection systems of
hypersonic vehicles. In general, the transition is a result of the nonlinear response of
laminar boundary layers to forcing environmental disturbances (Herbert & Morkovin
1979; Morkovin 1989; Reshotko 1994; Herbert 1996). Depending on the amplitudes
of forcing disturbances, there are several transition scenarios based on the ‘roadmaps’
of transition to turbulence for boundary layers in external flows as described by
Nishioka & Morkovin (1986) and Saric, Reed & Kerschen (2002). Receptivity is the
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first stage of a transition process. In the receptivity process, forcing disturbances enter
a boundary layer as perturbations of the basic state (Morkovin 1969; Reshotko 1984).
The perturbations caused by the forcing waves provide important initial conditions for
amplitudes, frequencies, and phases of instability waves which grow in the boundary
layer and eventually lead to transition. In an environment with small initial distur-
bances, the second stage is the generation and development of primary boundary-layer
instability wave modes, which are followed by secondary instabilities and nonlinear
breakdown to turbulence. For supersonic and hypersonic vehicles in flight, the initial
amplitudes of environmental disturbances are generally very small. Under such con-
ditions, the transition is likely to be the result of a growth of primary boundary-layer
instability modes, which are generated by a receptivity process. Currently, the receptiv-
ity mechanisms for generation of the primary boundary-layer modes in supersonic
and hypersonic boundary layers are not well understood and remain an important
area of current research.

Receptivity of low-speed incompressible boundary-layer flows has been extensively
studied in the last three decades (Saric et al. 2002). However, there have been only a few
theoretical, computational or experimental studies on the receptivity of compressible
boundary layers (Ma & Zhong 2003b). Fedorov (1997), Fedorov & Khokhlov (2001,
2002) and Fedorov & Tumin (2001) showed that the receptivity mechanisms of super-
sonic and hypersonic boundary-layer flows are essentially different from those of sub-
sonic and relatively low supersonic flows. Specifically, they found three new features
associated with the receptivity of supersonic boundary-layer flow. First, two boundary-
layer wave modes, which were termed modes 1 and 2, can be synchronized with the
fast and slow acoustic waves of non-dimensional phase speeds 1+1/Me and 1−1/Me

in the leading-edge region, respectively. Secondly, mode 1 can be synchronized with
external entropy/vorticity waves with a phase speed equal to free-stream velocity.
Thirdly, there is a synchronization point between mode 1 and 2 near branch I of the
second-mode neutral stability point. Based on the first feature, they predicted that
modes 1 and 2 can be effectively excited by acoustic waves near the leading-edge
region, in qualitative agreement with the leading-edge receptivity experiment of a
Mach 6 flow over a flat plate by Maslov et al. (2001). Furthermore, Fedorov and
colleagues showed that there is an intermodal exchange due to a wave-mode syn-
chronization between mode 1 and mode 2. After the synchronization, one of the two
modes converts to the second Mack mode.

The characteristics of supersonic boundary-layer normal modes were studied in
Part 1 of this series (Ma & Zhong 2003a). It was found that the well-accepted first,
second and third modes are, in fact, different sections of a single mode (see figure 7
in Ma & Zhong 2003a). These single modes were simply called Mack modes for
convenience of discussion. Ma & Zhong also found a family of stable wave modes
in the supersonic boundary layer. These stable modes were termed mode I, mode II,
mode III, etc. Mode I was called mode 1 and the first Mack mode was called mode 2
in Fedorov & Khokhlov (2001).

The main features of the supersonic boundary-layer normal modes analysed by
Fedorov et al. were in qualitative agreement with our numerical simulation (Ma &
Zhong 2003a, b). It was shown in Ma & Zhong (2003a) that both mode I and the
first Mack mode can convert to the unstable Mack second mode in numerical
simulations. Although mode I and mode II waves are always stable, they can have
direct resonant interactions with both the fast acoustic waves and the Mack-mode
waves. The generation of mode I waves by free-stream fast acoustic waves and the
conversion of mode I waves to the Mack second-mode waves were verified in Ma &
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Zhong (2003b), where the receptivity of Mach 4.5 flow over a flat plate to free-stream
fast acoustic waves was studied using DNS. It was shown that the receptivity leads
to the excitation of both Mack modes and a family of stable modes, i.e. mode I,
mode II, etc. The forcing fast acoustic waves do not interact directly with the unstable
Mack second mode. Instead, the stable mode I waves interact with both the fast
acoustic waves near the leading edge and the unstable Mack-mode waves downstream.
Through this two-step interaction process, the stable mode I waves transfer wave
energy from the forcing fast acoustic waves to the second Mack-mode waves inside
the boundary layer. In Fedorov & Khokhlov (2001), it was also predicted that mode 2
(the traditional first mode) can be directly generated by free-stream slow acoustic
waves in the leading-edge region, and mode 1 (mode I in Ma & Zhong 2003a) can be
effectively excited by vorticity waves and entropy waves, which are synchronized with
mode 1, after vorticity waves and entropy waves are swallowed by the boundary layer.
These two theoretical predictions have not yet been verified. In addition, boundary-
layer self-similar solutions were used in Fedorov’s analyses, so the effect of the bow
shock wave on the receptivity process was not considered.

Before entering the boundary layer, free-stream disturbances first pass through and
interact with an oblique shock created by the boundary-layer displacement. According
to the linear analyses of Ribner (1954), McKenzie & Westphal (1968) and Anyiwo &
Bushnell (1982), the interaction between free-stream disturbances and the oblique
shock generates all three kinds of transmitted disturbance waves, i.e. acoustic waves,
vorticity waves and entropy waves, irrespective of the nature of the free-stream dis-
turbance waves. These three kinds of transmitted waves propagate downstream and
interact with the boundary layer on the flat plate. Meanwhile, the perturbed boundary
layer also generates reflected acoustic waves propagating back to the shock. When the
reflected acoustic waves impinge on the shock, the interaction generates additional
reflected disturbances of all three kinds of waves, which in turn propagate downstream.
The combined effects of the interactions between the oblique shock and the free-stream
disturbances as well as the reflected acoustic waves from the wall can have strong
effects on the receptivity process of the supersonic boundary layer behind the shock.

Therefore, the objective of this paper is to study the receptivity mechanisms of a
Mach 4.5 supersonic boundary layer to free-stream slow acoustic waves, entropy waves
and vorticity waves, by numerical simulations. Especially, it aims to verify the theoreti-
cal prediction of Fedorov & Khokhlov (2001) on the generation of the first mode by
slow acoustic waves in the leading-edge region, and excitation of mode I by entropy/
vorticity waves at the resonant point downstream. The results of different types of
free-stream disturbances on boundary-layer receptivity are also compared with pre-
vious receptivity results for free-stream fast acoustic waves. In the numerical simula-
tions, the forcing free-stream slow acoustic waves, entropy waves and vorticity waves
are superimposed on the steady base flow in front of the shock. The subsequent
interaction of the forcing waves with the shock and the excitation of boundary-layer
wave modes are numerically simulated by computing the full Navier–Stokes equations.
The receptivity properties are analysed based on the results of the numerical simula-
tions and by linear stability analyses. The effects of the incident wave angles and the
frequencies of the forcing waves are also studied.

2. Governing equations and numerical methods
The governing equations and numerical methods have been described in detail in

Parts 1 and 2 (Ma & Zhong 2003a, b). The supersonic air flow is assumed to be
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Figure 1. A schematic of the receptivity to free-stream disturbances for a supersonic
boundary layer over a flat plate.

a thermally and calorically perfect gas. The governing equations in the numerical
simulations are the two-dimensional full Navier–Stokes equations, which can be
written in conservative form as follows:

∂U∗

∂t∗ +
∂

∂x∗ (F∗
1 + F∗

v1) +
∂

∂y∗ (F∗
2 + F∗

v2) = 0, (1)

where the superscript ‘∗’ represents dimensional variables, U∗ is a vector containing
the conservative variables, {ρ∗, ρ∗u∗, ρ∗v∗, e∗}, F∗

1 and F∗
2 are inviscid flux vectors,

and F∗
v1 and F∗

v2 are viscous flux vectors. Unless stated otherwise, dimensional flow
variables in this paper are non-dimensionalized by using the steady-state free-stream
conditions. Specifically, velocities are non-dimensionalized by the free-stream velocity
u∗

∞, length scales by a boundary-layer thickness length L∗ given by (4) in the next
section, density by ρ∗

∞, pressure by p∗
∞, temperature by T ∗

∞, time by L∗/u∗
∞, vorticity

by u∗
∞/L∗, entropy by c∗

p , wavenumber by 1/L∗, circular frequency by u∗
∞/L∗, etc. The

dimensionless flow variables are denoted by the same notations as their dimensional
counterparts, but without the asterisk.

The fifth-order shock-fitting finite-difference method of Zhong (1998) is used to
compute the two-dimensional nonlinear Navier–Stokes equations in the unsteady
flow fields bounded by the bow shock and the flat plate (figure 1). The shock-
fitting method treats the unsteady bow shock as a computational boundary which is
oscillatory because of its interaction with the free-stream forcing waves and with the
reflected waves from the wall surface. The flow variables behind the unsteady shock
are determined by the Rankine–Hugoniot relations across the shock, coupled with a
characteristic compatibility equation from behind the shock. The transient movement
of the shock and its interaction with free-stream disturbance waves are solved as a
part of the numerical simulation solutions. The use of the shock-fitting method makes
it possible to use high-order finite-difference schemes for spatial discretization of the
Navier–Stokes equations. A fifth-order upwind finite-difference scheme is applied
for the convective terms while a sixth-order central difference scheme is used for
the discretization of the viscous terms. The spatial discretization of the governing
equations leads to a system of first-order ordinary differential equations. A first-order
explicit Runge–Kutta (RK) method is used for the temporal integration because the
time step was very small in transient viscous flow simulations. We have calculated the
same case with the third-order RK integration. Almost identical results are obtained
to those from the first order. Therefore, the first-order RK integration is used in our
study.

The non-slip boundary condition is used for velocity at the wall. An adiabatic wall-
boundary condition is used for the steady base flow. For unsteady-flow simulations,
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temperature perturbations on the wall are set to be zero. The use of zero temperature
perturbation boundary conditions for an adiabatic mean flow is consistent with all
other theoretical analyses and linear stability theory (LST) calculations.

3. Flow conditions
The flow conditions are the same as those used in Kendall’s (1975) experiment on

the stability of a Mach 4.5 boundary-layer flow over a flat plate, i.e.

M∞ = 4.5, T ∗
∞ = 65.15 K,

p∗
∞ = 728.44 Pa, Pr = 0.72,

Free-stream unit Reynolds number: Re∗
∞ =

ρ∗
∞U ∗

∞
µ∗

∞
= 7.2 × 106 m−1.

In many figures in this paper, the results are plotted as functions of the dimensional
x∗-coordinate along the flat plate because this test case has been studied by Kendall
(1975). The dimensional x∗-coordinate in the figures can be easily converted to
dimensionless local Reynolds numbers by means of the following formula:

Rex = Re∗
∞x∗ = 7.2 × 106 m−1x∗, (2)

where x∗ is the dimensional coordinate in metres measured from the leading edge
along the plate surface.

In studies of boundary-layer stability, the Reynolds number is often taken as

R =
ρ∗

∞u∗
∞L∗

µ∗
∞

, (3)

where

L∗ =

√
µ∗

∞x∗

ρ∗
∞u∗

∞
. (4)

Hence, the relation between R and the local Reynolds number Rex is

R =
√

Rex. (5)

In terms of R, the full computational domain of the current simulations spans from
R = 207.9 to R = 2129.8. The inflow conditions at R = 207.9 are given by numerical
solutions from total variation diminishing (TVD) methods. The calculation of steady
base flow is described in detail in Ma & Zhong (2003a). In the actual simulations,
the computational domain is divided into 11 sub-zones with a total of 3121 grid
points in the streamwise direction and 121 grid points in the wall-normal direction.
A grid-stretching function is used in the wall-normal direction to cluster more points
inside the boundary layer near the wall. The grid points are distributed uniformly
in the streamwise direction. The numerical accuracy of the results based on this
grid assignment has been evaluated by grid refinement studies to ensure the grid
independence of the numerical solutions (Ma & Zhong 2001).

4. Free-stream disturbances
The wave fields are represented by perturbations in the following form,

q ′(x, y, t) = q(x, y, t) − q̄(x, y), (6)
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where q ′(x, y, t) represents the perturbation of any flow variable, q(x, y, t) is the
instantaneous value obtained by an unsteady numerical simulation of the nonlinear
Navier–Stokes equations, and q̄(x, y) is the steady component obtained by a separate
steady-flow simulation of the Navier–Stokes equations. The effects of the interactions
between the oblique shock and the free-stream disturbances are accurately taken
into account by using the high-order shock-fitting method. In the simulations, the
free-stream disturbances are superimposed on the steady base flow to investigate the
excitation and development of boundary-layer instability waves. Before reaching the
shock, the free-stream forcing disturbances are assumed to be weak monochromatic
planar acoustic, entropy or vorticity waves.

For weak free-stream disturbances, the perturbations of an arbitrary flow variable
can be written in the following form:


u′

v′

p′

ρ ′




∞

=




|u′|
|v′|
|p′|
|ρ ′|




∞

exp(i[kxx + kyy − ωt]), (7)

where |u′|, |v′|, |p′| and |ρ ′| are dimensionless free-stream perturbation amplitudes
satisfying the following relations for the four types of linear waves:
fast acoustic waves [ω = k∞(1/M∞ + cos θ∞)]:

|u′|∞ = ε cos θ∞, |v′|∞ = −ε sin θ∞,

|p′|∞ = εγM∞, |ρ ′|∞ = |p′|/γ ;
(8)

slow acoustic waves [ω = k∞(−1/M∞ + cos θ∞)]:

|u′|∞ = −ε cos θ∞, |v′|∞ = ε sin θ∞,

|p′|∞ = εγM∞, |ρ ′|∞ = |p′|/γ ;
(9)

entropy waves [ω = k∞ cos θ∞]:

|u′|∞ = 0, |v′|∞ = 0,

|p′|∞ = 0, |ρ ′|∞ = εM∞;
(10)

vorticity waves [ω = k∞ cos θ∞]:

|u′|∞ = ε sin θ∞, |v′|∞ = ε cos θ∞,

|p′|∞ = 0, |ρ ′|∞ = 0,
(11)

where ε is a small non-dimensional parameter representing the free-stream wave
magnitude. The parameter k∞ is the free-stream wavenumber vector with components
kx and ky in the streamwise and wall-normal direction, respectively, i.e.

kx = k∞ cos θ∞, ky = −k∞ sin θ∞, (12)

where θ∞ is the incident wave angle in the free-stream relative to the streamwise
direction as shown in figure 1.

The frequency of a disturbance wave is characterized by a dimensionless frequency
F defined by

F =
ω∗µ∗

∞
ρ∗

∞u∗2
∞

, (13)

where ω∗ is dimensional circular frequency. A non-dimensional circular frequency ω

can also be defined as

ω = ω∗L∗/u∗
∞. (14)
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Case Frequency (F ) θ∞ ε

F.1 2.2 × 10−4 0◦ 5.0 × 10−4

F.2 2.2 × 10−4 15◦ 5.0 × 10−4

F.3 1.6 × 10−4 22.5◦ 5.0 × 10−4

S.1 2.2 × 10−4 0◦ 5.0 × 10−4

S.2 2.2 × 10−4 22.5◦ 5.0 × 10−4

S.3 2.2 × 10−4 45◦ 5.0 × 10−4

S.4 2.2 × 10−4 67.5◦ 5.0 × 10−4

S.5 1.6 × 10−4 0◦ 5.0 × 10−4

S.6 1.6 × 10−4 22.5◦ 5.0 × 10−4

S.7 1.6 × 10−4 45◦ 5.0 × 10−4

S.8 1.6 × 10−4 67.5◦ 5.0 × 10−4

E.1 2.2 × 10−4 0◦ 5.0 × 10−4

E.2 2.2 × 10−4 22.5◦ 1.0 × 10−5

E.3 2.2 × 10−4 45◦ 1.0 × 10−5

E.4 2.2 × 10−4 67.5◦ 1.0 × 10−5

E.5 1.6 × 10−4 0◦ 1.0 × 10−5

E.6 1.6 × 10−4 22.5◦ 1.0 × 10−5

E.7 1.6 × 10−4 45◦ 1.0 × 10−5

E.8 1.6 × 10−4 67.5◦ 1.0 × 10−5

V.1 2.2 × 10−4 0◦ 5.0 × 10−4

V.2 2.2 × 10−4 22.5◦ 1.0 × 10−5

V.3 2.2 × 10−4 45◦ 1.0 × 10−5

V.4 2.2 × 10−4 67.5◦ 1.0 × 10−5

V.5 1.6 × 10−4 0◦ 1.0 × 10−5

V.6 1.6 × 10−4 22.5◦ 1.0 × 10−5

V.7 1.6 × 10−4 45◦ 1.0 × 10−5

V.8 1.6 × 10−4 67.5◦ 1.0 × 10−5

Table 1. Case F. Free-stream fast acoustic waves. Case S. Free-stream slow acoustic waves.
Case E. Free-stream entropy waves. Case V. Free-stream vorticity waves.

The relation between the non-dimensional circular frequency ω and F is

F =
ω

R
. (15)

Because receptivity to fast acoustic waves has been discussed in our previous paper
(Ma & Zhong 2003b), three groups of computational cases are studied in this paper
for receptivity to free-stream slow acoustic waves, entropy waves and vorticity waves,
respectively. For each group, eight different test cases with different combination of
two different frequencies, i.e. F = 1.6 × 10−4, 2.2 × 10−4, and four different incident
wave angles, i.e. θ∞ = 0◦, 22.5◦, 45◦ and 67.5◦ are considered to study parametric
effects of frequencies and disturbance incident angles. These two frequencies are
chosen because the branch II neutral stability point of the second mode and the peak
of mode II are located inside the computational domain. Both of them can move
outside the computational domain for lower frequencies according to our previous
results (Ma & Zhong 2003a). The flow conditions of the three groups of computational
cases are given in table 1. Numerical results about these cases will be compared with
our previous results shown in Ma & Zhong (2003b).

For each case of the boundary-layer response to a forcing wave, the unsteady
computations are carried out for a number of periods in time until the numerical



70 Y. Ma and X. Zhong

solutions reach a periodic state. After that, unsteady computations are conducted
for one additional period in time, so that a temporal Fourier analysis is performed
on the results of the unsteady flow to obtain the amplitudes and phase angles of
disturbances in the following form:

φ′(x, y, t) = |φ′(x, y)| exp(i[ψ ′(x, y) − ωt]), (16)

where |φ′(x, y)| and ψ ′(x, y) are local amplitudes and phase angles of the induced
waves in the flow field, respectively. From the wave amplitudes and phase angles,
streamwise wavenumbers and growth rates of the disturbance waves can be extracted
from the numerical solutions near the wall by

αr =
d|ψ ′|
dx

, (17)

αi = − 1

|φ′|
d|φ′|
dx

. (18)

The values calculated by using (17) and (18) correspond to the streamwise wave-
number and growth rate of a single wave if the numerical solutions are dominated
by a single discrete wave mode in a local region. Then phase velocity of the single
wave is given by

a = ω/αr. (19)

If the local numerical solutions contain a mixture of two or more wave modes, the
values of αr and αi calculated by (17) and (18) do not represent wavenumber and
growth rate of a single wave. Instead, they are the result of a modulation of these
wave modes.

5. Oblique shock and free-stream disturbance interaction
The theoretical results of the interaction of linear free-stream disturbances with ob-

lique shock waves (McKenzie & Westphal 1968) are compared with current numerical
results in this section. These theoretical results can be used to validate the current
numerical results on unsteady flows. The linear interaction theory also helps to analyse
the receptivity mechanisms.

Figure 2 shows an oblique shock wave with a shock angle θshk , incident free-stream
forcing waves with angle θ∞ and wavenumber k∞, transmitted acoustic waves with
angle θ2 and wave number k2, and transmitted entropy/vorticity waves with angle
θ3 and wavenumber k3. The angle is positive if its relative position to the x-axis is
consistent with that shown in figure 2. Otherwise, the angle is negative. Figure 2 also
depicts the normal and tangential components of the free-stream velocity and the
vector of the incident wavenumber relative to the direction of shock. Given amplitude,
incident wave angle of free-stream disturbances, and oblique shock angle (between
15.8◦ and 13.4◦ as shown in figure 4 of Ma & Zhong 2003a), the angle and amplitude
of transmitted disturbances behind the shock can be calculated by using McKenzie &
Westphal’s theory with errata in Anyiwo & Bushnell (1982). The incident waves can
be planar fast acoustic waves, slow acoustic waves, entropy waves, or vorticity waves.

For the case of incident fast acoustic waves, it was found that a good agreement
is achieved between the theoretical prediction and the numerical simulation (Ma &
Zhong 2003b). However, for incident free-stream slow acoustic waves, there is no
theoretical prediction available because the shock angle is larger than the critical
shock angle allowed in the linear analysis (McKenzie & Westphal 1968). From the
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Figure 2. Configuration of the interaction between free-stream forcing disturbances
and a planar oblique shock.

linear analysis, the wave angles of the generated acoustic waves behind the shock, θ2,
are the same for the cases of free-stream entropy waves and vorticity waves at the
same incident wave angles. In addition, the wave angles of the generated acoustic
waves behind the shock are independent of the frequencies of the incident waves in
front of the shock. Therefore, incident entropy waves and vorticity waves are discussed
together here.

Figure 3 shows the distribution of wave angles of the generated fast acoustic waves
(θ2) induced by free-stream entropy/vorticity waves. Different lines stand for different
incident wave angles (θ∞). Owing to the change of shock angle as x increases, θ2

gradually decreases along the streamwise direction for different incident wave angles.
Figure 3 also shows that θ2 increases with increasing incident wave angle θ∞. In
addition, it is found that θ2 may become negative when θ∞ is less than 37.5◦. When
incident wave angle decreases further to 30◦, the transmitted wave angle θ2 even
becomes less than −θshk . Figure 2 shows that direction of k2 points to the free-stream
after θ2 becomes less than −θshk .

Figure 4 shows contours of instantaneous pressure perturbations after the flow field
reaches a periodic state for cases E.7 and V.7. Only part of the flow field is shown
for clarity. From (9) to (12), pressure perturbations are characteristic of acoustic
waves outside the boundary layer. Figure 4 shows that acoustic waves are generated
by the interaction between the free-stream entropy/vorticity waves and the oblique
shock. The phase velocity of acoustic waves immediately behind the shock can be
calculated from (19) and is shown in figure 5. The oscillations in figure 5 are caused
by interaction between the oblique shock and the reflected waves from the plate
surface. According to McKenzie & Westphal’s theory, both fast and slow acoustic
waves can be generated behind the shock. Based on the results of phase velocity
shown in figure 5, the generated acoustic waves are fast acoustic waves only. As
expected, the wave patterns for the acoustic waves generated behind the shock in the
region after x∗ > 0.2 m are very similar for the two cases. This similarity is because
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Figure 3. Wave angles of fast acoustic waves behind the shock generated by free-stream plane
entropy/vorticity waves at different incident wave angles. Theoretical results are represented
by different lines; �, simulation results �, −θshk (shock angle) (M∞ =4.5, F = 1.6 × 10−4).

the acoustic waves generated behind the shock have the same wave angles for the
two cases. In the region near the leading edge (x∗ < 0.2 m), similarity is not clear,
owing to significant changes of shock angle, and wave reflections from the wall. In
the region away from the leading edge, the similar wave patterns consist of parallel
contour lines in pressure perturbations behind the shock, which stands for the wave
front of generated acoustic waves. A straight line is drawn along any one of the
parallel lines, then the wave angle of generated acoustic waves is determined by the
direction of wave propagation k2 which is perpendicular to this straight line and
points downstream because there are no waves propagating upstream for supersonic
flow. The simulations shows that the wave angles of the generated acoustic waves (θ2)
are about 15.3◦ and the difference is less than 1.0◦ from x∗ = 0.15 m to x∗ =0.63 m.
The theoretically predicted wave angle of the generated acoustic waves (θ2) is between
24.9◦ and 15.7◦ for θ∞ = 45◦. The angle θ2 decreases very fast (from 24.9◦ to 17.0◦) in
the region near the leading edge (x∗ < 0.15 m) owing to a significant change of shock
angle, while it is almost constant (between 17.0◦ and 15.7◦) in the region between
0.15 m<x∗ < 0.63 m. Therefore, values of θ2 measured from numerical simulations
are very close to those from the linear interaction theory. This good agreement can
confirm the accuracy of the current numerical simulation.

Similarly, figure 6 shows the contours of instantaneous pressure perturbations for
cases E.8 and V.8. This figure shows wave patterns behind the shock that are more
complex than those shown in figure 4. Figure 6 shows that there is a significant
change in wave patterns in the region immediately behind the shock near the location
x∗ = 0.21 m. For x∗ < 0.21 m, there are much clearer parallel wave patterns in the case
of free-stream entropy waves than in the case of free-stream vorticity waves. The
wave angles for parallel wave patterns shown in figure 6(a) behind the shock for
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Figure 4. Fast acoustic waves (contours of instantaneous pressure perturbations) generated
by (a) free-stream entropy waves (case E.7) and (b) free-stream vorticity waves (case V.7)
(M∞ = 4.5, F = 1.6 × 10−4 and θ∞ = 45◦).

x∗ < 0.21 m are between 62.0◦ and 57.7◦. The theoretical calculations predict θ2 to be
in the range of 63.5◦ (at the inlet) to 58◦ (at the exit) as shown in figure 3. Values of θ2

obtained from the theoretical prediction are in a very narrow range between 60.4◦ and
59.3◦ in the region of 0.1 m < x∗ < 0.63 m. Therefore, there is a very good agreement
between the simulation and the theoretical prediction for x∗ < 0.21 m. For x∗ > 0.21 m,
figure 6(a) shows that parallel wave patterns behind the shock disappear. Instead,
new parallel wave patterns with wave angle close to −57.4◦ are generated between
the shock layer and the boundary layer. These are caused by strong wave reflections
from the wall after the impingement of the generated acoustic waves on the wall. As
a result, the wave angles of reflected acoustic waves from the wall are almost equal to
the wave angles of generated acoustic waves behind the shock and the signs of wave
angles are opposite to each other. The wave angles after reflection are not exactly
equal to the incident wave angles because of diffraction inside the boundary layer. The
reflected acoustic waves propagate downstream and hit the oblique shock from behind.
Because the flow is supersonic ahead of the shock, no disturbances are created ahead
of the shock as a result of the impingement of reflected acoustic waves from behind
the shock. However, the acoustic waves incident upon the shock from behind, which
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are reflected from the wall, create new components of acoustic waves, entropy waves
and vorticity waves behind the shock. Therefore, the pressure perturbations shown in
figure 6(a) are the result of multiple reflections between the shock and wall surface.
Because of interaction between the acoustic waves generated and reflected behind
the shock and the acoustic waves reflected from the wall, there are no clear parallel
wave patterns shown behind the shock in the region of x∗ > 0.21 m in figure 6(a). For
acoustic waves generated by free-stream vorticity waves, shown in figure 6(b), the wave
angle of the parallel wave patterns in the region x∗ < 0.21 m is also close to 57.7◦,
which is in good agreement with theoretical prediction. However, there are much
more complicated wave patterns resulting from the interaction between generated
and reflected acoustic waves behind the shock and reflected acoustic waves from the
wall as compared with that shown in figure 6(a).

As shown in figure 3, the wave angles of the generated acoustic waves behind the
shock, θ2, decrease when the incident wave angles θ∞ decrease. For θ∞ =22.5◦, the
theoretical values of θ2 are between −23.4◦ (at the inlet) and −30.9◦ (at the exit). In
particular, θ2 is between −29.6◦ and −30.9◦ in the downstream region of x∗ > 0.1 m.
Therefore, the direction of wavenumber vector, k2, points towards the free-stream
because θ2 is smaller than the shock angle, −θshk . As shown in figure 4 of Ma &
Zhong (2003a), the shock angle θshk is between 15.8◦ and 13.4◦. Figure 7 shows
contours of instantaneous pressure perturbations induced by (a) free-stream entropy
waves (case E.6) and (b) free-stream vorticity waves (case V.6). Very similar wave
patterns in the region immediately behind the shock are observed for the two cases.
This figure shows that the direction of generated acoustic waves k2 points to the free-
stream direction, which is in agreement with the theoretical prediction. In addition, θ2,
which can be measured from wave fronts shown in figures 7(a) and 7(b), is between
−27.7◦ and −26.8◦ in the region after x∗ > 0.1 m. Again, the wave angles of the
generated acoustic waves measured from the results of numerical simulations agree
well with the theoretical results.
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Figure 6. Fast acoustic waves (contours of instantaneous pressure perturbations) generated
by (a) free-stream entropy waves (case E.8) and (b) free-stream vorticity waves (case V.8)
(M∞ = 4.5, F = 1.6 × 10−4 and θ∞ = 67.5◦).

For the case of free-stream entropy/vorticity waves at θ∞ = 0◦, there is no theoretical
result on the wave angles of the acoustic waves generated behind the oblique shock,
because θ∞ is smaller than the critical incident wave angle (McKenzie & Westphal
1968). Though the wave angles of the generated acoustic waves cannot be predicted
by linear interaction theory, they can be obtained by the numerical simulations of
the Navier–Stokes equations. The instantaneous pressure perturbations induced by
free-stream entropy waves and vorticity waves at the incident wave angle of θ∞ = 0◦

(cases E.5 and V.5) are plotted in figure 8. Again, there are very similar wave patterns
in instantaneous pressure perturbations between the two test cases. The wave angle θ2

obtained from the numerical simulation is between −47.5◦ and −46.6◦ in the region of
x∗ > 0.1 m. The results for θ2 are measured directly from wave fronts shown in figure 8.
In addition, the wave angles measured from figure 8(a) for the case of free-stream
entropy waves are the same as those measured at the same location in figure 8(b) for
the case of free-stream vorticity waves.

Except for θ∞ =0◦, the results of θ2 from the numerical simulations are also com-
pared with the theoretical results in figure 3. Because θ2 measured from the simulation
results of pressure perturbations for the cases of free-stream entropy waves are the
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Figure 7. As for figure 6, but (a) case E.6, (b) case V.6 and θ∞ = 22.5◦.

same as those generated by vorticity waves at the same incident wave angles and at
the same location, only simulation results for the cases of free-stream entropy waves
are plotted in figure 3 by symbol ‘◦’ for comparison. Overall, the figure shows that
there is good agreement between the results obtained from the numerical simulations
and those of the theoretical predications, which demonstrates that our numerical code
based on shock-fitting methods can correctly simulate the interaction between free-
stream disturbances and oblique shock. Furthermore, numerical results can consider
wave reflections from wall surface and give more detail information about complex
wave patterns.

Figure 9 compares amplitudes of pressure perturbations immediately behind the
oblique shock for cases E.8 and V.8. For incident free-stream entropy waves (case E.8),
there is good agreement between the numerical results and the theoretical predictions
in the amplitudes of acoustic waves generated behind the shock, in the region
downstream. However, because of strong wave reflections between the shock and the
boundary layer near the leading edge, there are strong oscillations in the numerical
results near the leading edge. Since such wave reflections are not considered in the
linear theory, the theoretical prediction is not expected to agree with the simulation
results in the leading-edge region. For the case of incident vorticity waves, there are
visible differences between the numerical results and theoretical predictions in the
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Figure 8. As for figure 6, but (a) case E.5, (b) case V.5 and θ∞ = 0◦.

amplitude of acoustic waves generated behind the shock. These differences may be
caused by stronger wave reflections between the shock and the boundary layer.

For cases E.7 and V.7, figure 9(b) shows that the theoretical amplitudes of the fast
acoustic waves generated by free-stream vorticity waves are almost the same as those
induced by free-stream entropy waves. The amplitudes of the fast acoustic waves
generated by free-stream entropy waves and vorticity waves can be very different
at other incident wave angles, although the same wave angles θ2 are obtained for
the two types of waves with the same incident angles. For example, at θ∞ =67.5◦,
the amplitudes of the acoustic waves generated by free-stream entropy waves are
stronger than those generated by free-stream vorticity waves (figure 9). However, the
opposite is true for the cases of θ∞ =22.5◦ shown in figure 10. At θ∞ = 22.5◦, the
amplitude of the acoustic waves generated by free-stream entropy waves is weaker
than that by free-stream vorticity waves. Figure 10 also shows that there are strong
oscillations in the amplitudes of the pressure perturbations, which is a result of the
interaction between the generated acoustic waves and the oblique shock. Therefore,
figure 10 shows obvious and expected differences between the simulation results and
theoretical predictions. At θ∞ =0◦, theoretical prediction is not available. Figure 10(b)
compares only the simulation results for the amplitudes of the fast acoustic waves
generated by free-stream entropy waves and those by free-stream vorticity waves for
θ∞ =0◦. It shows that there are very similar shapes between the two cases, while the
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Figure 9. Comparison of the pressure perturbation amplitudes for fast acoustic waves
immediately behind the shock generated by free-stream entropy waves (cases E.7 and E.8)
and vorticity waves (cases V.7 and V.8) with different free-stream wave angles (M∞ = 4.5 and
F = 1.6 × 10−4).

amplitude of fast acoustic waves generated by free-stream vorticity waves are much
stronger than those generated by free-stream entropy waves.

6. Receptivity to free-stream slow acoustic waves
This section considers planar free-stream slow acoustic waves with different fre-

quencies and different incident wave angles (θ∞), i.e. cases S.1 to S.8 will be discussed.
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6.1. Free-stream slow acoustic waves with F = 2.2 × 10−4 and θ∞ = 0◦ (case S.1)

Figure 11 shows the contours of instantaneous density perturbations after the flow
field reaches a periodic state in time. For clarity only a part of the flow field is
shown in the figure. The position of the oscillating oblique shock is presented as
the upper boundary of the flow field. Because the amplitude of the free-stream
disturbances is small, the shock oscillations are not visible. Behind the shock, there
are strong transmitted acoustic waves propagating in the direction almost parallel to
the wall. The dimensionless phase velocity is about 1 − 1/M∞, which indicates that
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Figure 11. Contours of density perturbations due to free-stream plane slow acoustic waves
(case S.1) (M∞ = 4.5, F = 2.2 × 10−4 and θ∞ = 0◦).

the transmitted waves are slow acoustic waves. From the results of the base flow
shown in Ma & Zhong (2003a), the displacement thickness of the boundary layer
is about y/L = 12.9. In figure 11, there is a rope-like wave pattern near the edge
of the boundary layer for 0.1 m <x∗ < 0.2 m, which is the typical signature of the
second-mode Mack waves.

Figure 12 compares the amplitudes of pressure disturbances along different stream-
wise grid lines for free-stream slow acoustic waves and free-stream fast acoustic waves.
J = 1 stands for the grid line near the wall surface, while J = 121 represents the grid
line immediately behind the shock. The dimensionless amplitude of the free-stream
acoustic waves is also plotted as a dotted line. Because of the interaction between
the shock and the free-stream forcing waves, there is a jump in the amplitudes of
pressure perturbations across the shock for both cases. The amplitudes of pressure
perturbations behind the shock are larger for the free-stream slow acoustic waves
than for the free-stream fast acoustic waves. After passing the shock, the transmitted
acoustic waves propagate downstream, penetrate the boundary layer, impinge and
reflect from the wall. The interaction between forcing waves and viscous boundary-
layer flow leads to the generation of boundary-layer disturbance waves. As discussed
in Ma & Zhong (2003b), the dominant boundary-layer disturbances in receptivity
to free-stream fast acoustic waves are mode I waves, which are always stable and
convert to the second-mode waves. Figure 12 shows that the development of pressure
perturbations on the wall induced by free-stream slow acoustic waves has a totally
different characteristic from that induced by free-stream fast acoustic waves. Free-
stream slow acoustic waves do not generate mode II waves in the region around
x∗ = 0.3 m. Instead, the Mack modes are generated upstream with a peak located
around x∗ = 0.14 m. The dominant boundary-layer waves generated by slow acoustic
waves are recognized to be the second-mode waves from the ‘rope-like’ wave pattern
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Figure 12. Distributions of pressure perturbation amplitudes induced by free-stream plane
slow acoustic waves (case S.1). The results are compared with the corresponding results induced
by free-stream fast acoustic waves (case F.1) (M∞ =4.5, F = 2.2 × 10−4 and θ∞ = 0◦).

(Pruett & Zang 1995) shown in figure 11, which can also be confirmed by comparing
local wave structures with eigenfunctions of the second mode from the LST calcula-
tions. Figure 13 shows the comparison of the fluctuation profiles at x∗ = 0.14 m. There
is a very good agreement between the results from the LST and DNS for profiles
inside the boundary layer (y/L < 12.9). The strong fluctuation in temperature profile
near the edge of the boundary layer is also characteristic of the second mode.

The difference in the receptivity to free-stream fast and slow acoustic waves can be
explained from the LST results for the phase velocities of boundary-layer normal
modes. Figure 14 compares the phase velocities of boundary-layer disturbances
induced by free-stream planar slow acoustic waves with those induced by free-stream
fast acoustic waves. The receptivity process in the case of free-stream fast acoustic
waves is the excitation of stable mode I near the leading edge, followed by the
excitation of the second Mack mode by mode I downstream. Still further downstream,
a strong mode II, which is always stable, is generated by direct interaction with the fast
acoustic waves. Figure 14 shows that this receptivity mechanism is essentially different
from that of free-stream slow acoustic waves. For receptivity to slow acoustic waves,
figure 14 shows that the phase velocities of the induced boundary-layer disturbances
are very close to that of the first mode obtained from the LST results, which
indicates that the first Mack modes are generated by the forcing free-stream slow
acoustic waves. This numerical result is consistent with Fedorov & Khokhlov’s (2001)
theoretical prediction. After passing the synchronization point (x∗ = 0.11 m) between
mode I and the first mode, the first-mode waves become the second Mack mode
waves. The second-mode waves are significantly amplified and become dominant
after entering the second-mode unstable region. The second-mode waves generated
by the free-stream slow acoustic waves reach a peak amplitude of |p′|/p∞ = 0.002205,
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Figure 13. Comparison of wave structure of case S.1 with that of the second mode obtained
by the LST (M∞ = 4.5, F = 2.2 × 10−4, θ∞ = 0◦ and Rex = 1.0 × 106).

at the branch II neutral point located at x∗ = 0.14 m (R = 1004 and RF = 0.221).
According to the LST results, the branch II neutral point of the second Mack mode
is located at R =999.6, which is in good agreement. After passing the branch II
neutral point, the second-mode waves decay rapidly and lose dominance. As a result
of modulation between different waves, there are strong oscillations in phase velocity
curve for x∗ > 0.2 m (figure 14). The phase velocity curve is cut at x∗ = 0.24 m because
boundary-layer disturbances induced by free-stream slow acoustic waves become very
weak after this location.

From figure 12, the maximum amplitude of the second Mack mode waves at the
branch II neutral stability point for the case of free-stream slow acoustic waves is
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larger than that for the case of free-stream fast acoustic waves, which is qualitatively
consistent with Fedorov & Khokhlov’s (2002) theoretical results. In fact, there are
strong oscillations in boundary-layer disturbances generated by free-stream fast
acoustic waves due to a modulation between the second-mode waves and other waves.
The actual component of the second-mode waves is even weaker than that shown in
figure 12 in the region where the second-mode waves are expected to be dominant
(0.1 m < x∗ < 0.2 m). The component of the second-mode waves can be extracted
from the overall disturbance field in the boundary layer by means of a spatial Fourier
analysis, which was described in detail in Ma & Zhong (2003b) and is not repeated
here. Quantitatively, the response coefficient of the second Mack mode, which is
defined in Ma & Zhong (2003b) as the ratio of the maximum amplitude of induced
boundary-layer disturbances to that of the forcing free-stream disturbance waves, is
0.7 for slow acoustic waves, as compared to 0.187 for fast acoustic waves after a
decomposition of the second mode from total boundary-layer disturbances. Therefore,
the receptivity of the second Mack mode to free-stream slow acoustic waves is about
3.7 times as large as that to free-stream fast acoustic waves for the current case of
zero degree free-stream incident wave angle.

There are two reasons for the larger response coefficient of the second mode in
the case of free-stream slow acoustic waves. First, the amplitudes of the transmitted
slow acoustic waves are stronger than those of transmitted fast acoustic waves as
shown in figure 12. Secondly, as shown in figure 14, the receptivity mechanisms of the
boundary-layer second-mode waves to free-stream fast acoustic waves are different
from those to free-stream slow acoustic waves. Specifically, in the case of free-stream
fast acoustic waves, the second-mode (Mack modes) waves are induced through stable
mode I waves which can have direct resonant interactions with the fast acoustic waves.
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Figure 15. Distributions of pressure perturbation amplitudes induced by free-stream plane
slow acoustic waves (case S.6). The results are compared with the corresponding results induced
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On the other hand, in the case of free-stream slow acoustic waves, the first mode
(Mack modes) waves are generated directly from slow acoustic waves, then the first
mode evolves to the second mode during propagation downstream. Since mode I is
inherently much more stable than the first mode according to the LST analysis, the
second Mack mode waves generated by the slow acoustic waves are much stronger.
Because of these two reasons, the initial amplitudes of the second-mode waves are
much stronger in receptivity to free-stream slow acoustic waves as compared to the
receptivity to free-stream fast acoustic waves.

6.2. Free-stream slow acoustic waves with F = 1.6 × 10−4 and θ∞ = 22.5◦ (case S.6)

Figure 15 compares the amplitudes of pressure perturbations immediately behind the
shock (J = 121) and along the wall surface (J = 1) for receptivity to free-stream fast
acoustic waves and slow acoustic waves. While the pressure perturbations behind the
shock are slightly amplified and close to the amplitude of free-stream disturbances
for the case of free-stream fast acoustic waves, there is a significant increase in the
amplitudes of pressure perturbations across the shock for the case of free-stream
slow acoustic waves. This is especially true near the leading edge. Again, boundary-
layer disturbances are generated by the interaction between the transmitted acoustic
waves and the viscous boundary-layer flow. Figure 15 shows that there are strong
oscillations in the amplitudes of the pressure perturbations on the wall induced by
free-stream fast acoustic waves. On the contrary, there is a smooth development for
the pressure perturbations on the wall surface induced by free-stream slow acoustic
waves. For the case of receptivity to free-stream slow acoustic waves, there is a smooth
growth and decay of boundary-layer disturbances in the region 0.19 m< x∗ < 0.38 m.
The dominant boundary-layer disturbances are identified to be the second mode by
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comparing phase velocities and fluctuation profiles with the LST results. while, for
the case of free-stream fast acoustic waves, a modulation of the second-mode with
other waves is observed in the same region, and the receptivity of mode II waves is
dominant.

As shown in figure 15, the maximum amplitude of the surface pressure perturbations
due to forcing slow acoustic waves is located at x∗ = 0.274 m (RF = 0.225) with
|p′|/p∞ = 0.00715. The maximum amplitude occurs at the second-mode branch II
neutral point. The maximum amplitude is about 3.24 times larger than in the case S.1
(F = 2.2 × 10−4). The physical mechanism for the effect from frequency on the peak
value of the second mode will be explained at the end of § 6. The branch II location
is predicted by LST to be located at x∗ =0.2738 m (RF =0.2246). Again, there is an
excellent agreement between the value obtained by the numerical simulations and
that predicted by LST. In addition, the branch II neutral stability point in term of RF
(0.2246) for F = 1.6 × 10−4 is very close to the value of RF = 0.2209 in the previous
case with F = 2.2 × 10−4, which is consistent with the results presented in Part 1 (Ma &
Zhong 2003a) about locations of branch II neutral points for different frequencies.

Figure 15 shows that the amplitudes of the pressure perturbations at the second-
mode branch II neutral point induced by forcing slow acoustic waves are weaker than
those induced by forcing fast acoustic waves. This is different from the F =2.2 × 10−4,
θ∞ =0◦ case. where the pressure perturbation amplitude at the second-mode branch
II neutral point due to slow acoustic waves is stronger than that of the corresponding
case of free-stream fast acoustic waves. However, the pressure perturbations of the
case of free-stream fast acoustic waves near branch II neutral point are a result of
the mixture of a number of wave modes, including the second Mack mode. There
are multiple components of different waves, including the second mode waves, in
boundary-layer disturbances induced by fast acoustic waves, which results in strong
oscillations in amplitude distribution of pressure perturbations near the second-
mode branch II neutral point. A wave mode decomposition is necessary in order to
extract the component of the second mode in the results. After a decomposition of
different components in boundary-layer disturbances, the component of the second
mode waves induced by free-stream fast acoustic waves at the second-mode branch
II neutral point is weaker than that by slow acoustic waves at the same location.
Quantitatively, the response coefficients of the second Mack mode defined in Ma &
Zhong (2003b) are 2.27 for the case of free-stream slow acoustic waves and 0.87 for
the case of free-stream fast acoustic waves. Again, as explained in the previous case,
the second-mode receptivity to free-stream slow acoustic waves is much stronger than
that to free-stream fast acoustic waves.

Figure 16 compares the phase velocity distributions of boundary-layer disturbances
with the corresponding LST results. Again, the phase velocity curve for the case of
slow acoustic waves is cut at x∗ = 0.45, where the induced boundary-layer disturbances
almost die out as shown in figure 15. It shows that there is very good agreement in the
phase velocities of boundary-layer disturbances induced by slow acoustic waves and
that of Mack modes from the LST results, which confirms that Mack mode waves
are directly generated near the leading edge by slow acoustic waves. The dramatic
change in phase velocity of boundary-layer disturbances induced by fast acoustic
waves shows that there are boundary-layer mode changes. This has been analysed in
detail in Ma & Zhong (2003b).

Because the dominant Mack mode waves are generated directly by free-stream slow
acoustic waves, the growth rate of the induced Mack mode waves can be compared
with the second mode growth rates predicted by LST calculations. Figure 17 shows
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Figure 18. Distributions of pressure perturbations on the wall due to free-stream plane slow
acoustic waves for cases S.1 to S.4 (M∞ = 4.5, F = 2.2 × 10−4).

the comparison of growth rates. Overall, there is good agreement in the growth rates
in the second-mode dominant region (0.19 m< x∗ < 0.38 m) between the simulation
results and the LST results, considering that there is a modulation between Mack
mode waves and other waves induced by free-stream slow acoustic waves. Before the
second Mack mode becomes dominant, the first mode waves are strongly modulated
by other wave components, which leads to strong oscillations in the growth rate curve
of the simulation results in the region with x∗ < 0.19 m.

6.3. Effect of frequencies and incident wave angles of forcing slow acoustic waves

Figures 18 and 19 show the amplitudes of pressure disturbances on the wall for cases
S.1 to S.8. Dominant second Mack mode waves are induced in all eight cases. For
forcing waves of the same frequency but different incident wave angles, the induced
second Mack mode waves reach their maximum perturbation amplitudes at the same
branch II neutral stability location. With increasing incident wave angles, the peak
amplitude of induced second Mack-mode waves decrease dramatically. In the recep-
tivity process, boundary-layer disturbances are generated and amplified by transmitted
slow acoustic waves due to resonant interactions between them. The resonant inter-
action happens only when the phase velocity of boundary-layer disturbances is close
to that of forcing waves. For small incident angles, there are much stronger resonant
interactions, because phase velocity of the first mode is closer to that of slow acoustic
waves with zero incident angle. When incident angles increase, more perturbation
energy from transmitted slow acoustic waves is reflected on the wall surface and
carried by reflected acoustic waves. Accordingly, there is less perturbation energy
transferred to boundary-layer disturbances. Therefore, the initial amplitude of the
second-mode waves generated by slow acoustic waves is smaller for larger incident
angles, which leads to smaller peak value at the branch II neutral point.

To quantitatively study the acoustic receptivity of the second mode, the receptivity
can be measured by a branch I receptivity coefficient (Saric et al. 2002) defined as
the ratio of the induced second-mode amplitude at the branch I neutral stability
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Figure 19. Distributions of pressure perturbations on the wall due to free-stream plane slow
acoustic waves for cases S.5 to S.8 (M∞ = 4.5, F = 1.6 × 10−4).

location to the amplitude of free-stream disturbances. From figure 17 (case S.6),
the second-mode branch I neutral point, which is located at x∗ = 0.184 m from the
LST results, is difficult to determine from the simulation results. Since the growth
of the second mode from the branch I to the branch II locations is mainly caused
by the eigenmode growth of the unstable second mode, the second-mode amplitude
at the branch I location can be determined by using the maximum wave amplitude at
the branch II location and an integration of the spatial growth rates between the
branch I and branch II locations (Ma & Zhong 2003b). Based on the LST results,
the ratios between the amplitude of the second mode at the branch II and branch I
locations are 5.2 and 10.6 for F = 2.2 × 10−4 and 1.6 × 10−4, respectively. Figure 20
shows the receptivity coefficients of the second mode to free-stream acoustic waves
as functions of the incident wave angles. For two different frequencies, the receptivity
coefficients of the second mode to free-stream slow acoustic waves decrease
dramatically with increasing incident wave angles. For comparison with receptivity to
free-stream fast acoustic waves, the receptivity coefficients of the second mode to fast
acoustic waves at F = 2.2 × 10−4 with different incident wave angles are also plotted in
figure 20. It shows that, unlike the current cases of free-stream slow acoustic waves, the
second-mode receptivity to free-stream fast acoustic waves is not very sensitive to the
change of incident wave angles, which has been discussed in Ma & Zhong (2003b).

For the case of θ∞ = 0◦, figure 20 shows that the receptivity coefficient of case S.5
(F = 1.6 × 10−4) is about 1.8 times larger than that of case S.1 (F = 2.2 × 10−4). As
discussed before, there is a strong interaction between boundary-layer disturbances
and transmitted slow acoustic waves. As a result, the induced boundary-layer
disturbances, which are dominated by the Mack mode, keep growing before reaching
the branch I neutral point, although the growth rate is relatively small compared
with that of the unstable second mode. The second-mode branch I neutral point
(x∗ = 0.184 m) for F = 1.6 × 10−4 is located downstream of that for F = 2.2 × 10−4

(x∗ = 0.097 m). Therefore, there is a much longer interaction range in terms of x∗ for
lower frequency, which leads to a larger initial amplitude of the second mode. This
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is why receptivity coefficients in figure 20 are larger for lower frequency for the same
incident wave angles. In addition, the integral of growth rate between the branch
II and branch I neutral points are 5.2 and 10.6 for F =2.2 × 10−4 and 1.6 × 10−4,
respectively. Thus, the second mode is much more amplified for lower frequency. For
these two reasons, the second-mode peak values for case S.6 is about 3.24 times larger
than that for case S.1.

7. Receptivity to planar free-stream entropy waves
Entropy waves in the free stream are characterized by fluctuations of temperature

and density. In this section, supersonic boundary-layer receptivity to planar free-
stream entropy waves (cases E.1 to E.8) are studied. The receptivity mechanisms of
boundary-layer normal modes to free-stream entropy waves and the effect of incident
wave angles on the receptivity are analysed by comparing the simulation results with
those of LST calculations.

7.1. Free-stream entropy waves at frequency F = 2.2 × 10−4 (case E.3)

Figure 21 presents the contours of instantaneous entropy perturbations (a) and density
perturbations (b) for case E.3. It shows that there are strong transmitted entropy waves
behind the shock. The wave angles of the transmitted entropy waves in the current
case, which can be measured from the contour lines of figure 21, are between 48.8◦

near the leading edge and 45.2◦ downstream. The theoretical values of the wave angles
of transmitted entropy waves in the current case are between 52.0◦ and 46.8◦, which
are very close to simulation results. The difference is due to reflected waves from the
wall surface and oscillation of oblique shock. The main focus of the present receptivity
study is the generation of boundary-layer second mode waves by the receptivity
process. From our previous study (Ma & Zhong 2003a), the second-mode waves
are expected to be dominant in the region of 0.1 m <x∗ < 0.2 m. However, figure 21
shows that there is no clear rope-like second-mode wave structure near the edge
of boundary layer in this region. The dominant component of the boundary-layer
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Figure 21. Contours of instantaneous entropy perturbations (a) and density perturbations (b)
generated by free-stream entropy waves for case E.3 (M∞ = 4.5, F = 2.2 × 10−4 and θ∞ = 45◦).

disturbances induced by free-stream entropy waves can be identified by comparing
the current results with LST and the receptivity results to fast acoustic waves.

The induced boundary-layer disturbances described by pressure perturbations on
the wall surface are shown in figure 22. The amplitudes of pressure perturbations
for case F.2 are also plotted in this figure for comparison. The wave angles for the
transmitted fast acoustic waves behind the shock are approximately the same for
these two cases although incident free-stream wave angles are different. Based on the
discussion in § 5, fast acoustic waves are generated behind the shock by free-stream
entropy waves. Here, the wave angle of generated acoustic waves is predicted by
theoretical analysis to be between 17.0◦ and 15.7◦ in the region of 0.15 m < x∗ < 0.63 m.
For case F.2, the wave angles of the transmitted fast acoustic waves are predicted
to be between 18.4◦ and 15.2◦. Therefore, the wave angles for fast acoustic waves
behind the shock for the two cases compared in figure 22 are very close. However,
the amplitude of transmitted acoustic waves in case F.2 is much larger than that of
the current case. Hence, the amplitude of pressure perturbations generated by fast
acoustic waves is adjusted by a factor of 1/1541.67, so that the maximum amplitudes
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are the same for both cases shown in figure 22. Because receptivity is linear in our
numerical studies, the adjusted result shown in figure 22 for case F.2 is equivalent
to receptivity to fast acoustic waves with ε = 3.24 × 10−7. It is obvious that there are
very similar growth and decay patterns of the induced waves between the two cases
shown in figure 22, which indicates that the same dominant waves are generated
in boundary-layer disturbances for the two cases. The dominant components of the
boundary-layer disturbances at different locations induced by fast acoustic waves
have been identified in Ma & Zhong (2003b). Mode I waves are first generated in the
leading-edge region (x∗ < 0.1 m). The second Mack mode is subsequently generated by
mode I in a later region (0.1 m < x∗ < 0.2 m) by means of a resonant interaction. Still
further downstream, stable mode II waves are dominant in the region of x∗ > 0.2 m
(figure 22). Through the comparison shown in figure 22, we can identify the dominant
components of boundary-layer disturbances induced by free-stream entropy waves
at all different locations as being the same as those induced by the free-stream fast
acoustic waves.

The phase velocities of boundary-layer disturbances for case E.3 are compared with
case F.2 in figure 23. In addition, the phase velocities of boundary-layer normal modes
calculated by LST are also plotted in this figure for comparison. The comparison of
the phase velocities of the induced boundary-layer disturbances and the corresponding
LST results of the normal modes can be used to identify wave modes of the induced
boundary-layer disturbances. As expected, the phase velocities of the boundary-layer
disturbances for the current case of free-stream entropy waves is very close to those
of mode I waves near the leading edge, while there is a good agreement between the
phase velocities of the boundary-layer disturbances and those of mode II waves in
the region downstream (x∗ > 0.2 m). As discussed in Ma & Zhong (2003b), mode I
and mode II waves are generated and amplified in the receptivity simulations due to
the resonant interaction between the generated fast acoustic waves behind the shock
and the two boundary-layer wave modes. Although mode I and mode II waves are
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predicted to be stable by the LST, their magnitudes grow because of the resonant
interactions. The phase velocities of mode I (or mode II) decrease during their
propagation downstream. As a result, the mode I (or mode II) waves decay owing to
their inherent stable properties, when their phase velocities decrease to a value where
there is no more resonant interaction between the mode I (or mode II) waves and fast
acoustic waves. Before mode I waves die out, they are synchronized with the Mack
mode at their mutual wave synchronization point located at x∗ = 0.11 m. According to
our previous study (figure 7 in Ma & Zhong 2003a), both the first Mack-mode waves
and mode I waves have almost the same profiles of disturbance structure across the
boundary layer at the synchronization point. As a result, mode I waves convert to the
Mack-mode waves in the synchronization region. Although the second-mode waves
are amplified owing to inherent instability, there are strong oscillations in the phase
velocity curve (figure 23) and the pressure perturbations (figure 22) in the middle
region owing to a modulation between the Mack mode waves and other waves,
such as acoustic waves and mode II waves. From the comparison of the receptivity
to free-stream fast acoustic waves in figure 23, it is clear that the boundary-layer
disturbances in the current case of free-stream entropy waves are generated by fast
acoustic waves behind the shock.

7.2. Free-stream entropy waves with F = 1.6 × 10−4 and θ∞ = 45◦ (case E.7)

In figure 24, the induced pressure perturbations on the wall surface for case E.7 are
compared with case F.3. Since linear receptivity is simulated here, the amplitude of
pressure perturbations generated by fast acoustic waves is rescaled by a factor of
1/1250 in figure 24 in order to compare with the results of the receptivity to free-
stream entropy waves. It should be noted that the amplitudes are adjusted so that
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entropy waves (case E.7) with those generated by free-stream acoustic waves (case F.3)
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the local peak values are the same as in the pressure perturbations at x∗ = 0.062 m in
figure 24. Overall, figure 24 shows that the growth and decay of the wave patterns of
the two cases are very similar. For case F.3, the wave angles of the transmitted fast
acoustic waves behind the shock decrease from θ∞ =26.2◦ near the leading edge to
θ∞ =23.4◦ at the exit based on the linear theory. On the other hand, the wave angles
of the generated acoustic waves (θ2) by free-stream entropy waves are predicted to
be between 24.9◦ (at the inlet) and 15.7◦ (at the exit). Because the wave angles of the
generated fast acoustic waves behind the shock for the two cases are close to each
other in the region near the leading edge, figure 24 shows that the wave patterns of
the two cases in the upstream region are very similar. The wave patterns of the two
cases differ in the downstream region because wave angles of the transmitted acoustic
waves alter more.

Because the dominant components of the boundary-layer disturbances induced by
free-stream fast acoustic waves have been identified in Ma & Zhong (2003b), the
dominant waves inside the boundary layer induced by free-stream entropy waves
shown in figure 24 can be identified by comparing with the receptivity results for
the case of free-stream fast acoustic waves. Similar to the case of free-stream fast
acoustic waves, it can be shown that the dominant wave modes shown in figure 24
are mode I waves in the leading-edge region (x∗ < 0.19 m), second-mode waves in
the middle region (0.19 m < x∗ < 0.38m), and mode II waves in downstream region
downstream (x∗ > 0.38 m). Again, the oscillations of the perturbation amplitudes in
the second-mode region are a result of a wave modulation among the second mode,
mode II waves and other waves.

The identification of the dominant waves inside the boundary layer induced by free-
stream entropy waves is confirmed by comparing the phase velocities of the induced
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boundary-layer disturbances with those of the boundary-layer normal modes obtained
by LST calculations. Figure 25 shows such comparison of the phase velocities. As
expected, the phase velocities of the induced boundary-layer disturbances are close
to those of mode I waves near the leading edge, while there is a good agreement
between the phase velocities of boundary-layer disturbances and mode II waves in the
region downstream (x∗ > 0.38 m). In the middle region (0.19 m < x∗ < 0.38 m), there
are strong oscillations in the phase velocities of boundary-layer disturbances due to
a modulation between Mack mode waves and other waves, such as acoustic waves
and mode II waves. At the beginning of the generation of the second mode near
the location of x∗ = 0.17 m, the initial amplitude of the second-mode waves are weak
compared with other components of modulation. The oscillations of the phase velocity
curve are around the phase velocity of the fast acoustic waves. After the generation
of the second mode from the mode I waves, the second mode is strongly amplified
because it is unstable. As a result, as shown in figure 25, the oscillation centre of phase
the velocity curve is close to the phase velocities of the second mode. The second
mode waves begin to decay after passing their branch II neutral stability point. In
the region downstream of x∗ > 0.3 m, the amplitudes of the second-mode waves are
so weak that the oscillation centre of the phase velocity curve moves back to phase
velocities of the fast acoustic waves and the mode II waves. The dominant boundary-
layer mode in a different region is further confirmed by comparing fluctuation profiles
with the LST results, which is not shown here owing to space limitations.

7.3. Free-stream entropy waves at frequency F = 1.6 × 10−4

at different incident wave angles

Figure 26 compares the amplitudes of pressure perturbations along the wall surface
for cases E.5 to E.8. It shows that the wave patterns of the induced waves change
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Figure 26. Distributions of pressure perturbations on the wall due to free-stream plane
entropy waves for cases E.5 to E.8 (M∞ =4.5, F = 1.6 × 10−4).

dramatically when the incident wave angles change. In other words, there is a strong
effect of the incident wave angles. However, after ignoring high spatial frequency
oscillations due to wave modulation, the overall trend of growth and decay in wave
patterns induced by free-stream entropy waves are very similar for different incident
angles except that boundary-layer disturbances are strongly amplified in the region
downstream x∗ > 0.4 m for case E.7 (see figure 26). The amplified boundary-layer
disturbances are identified as mode II waves by comparing the phase velocities
and fluctuation profiles with the LST results. As discussed in § 5, boundary-layer
disturbances are strongly affected by the impingement of fast acoustic waves on the
wall surface for the case E.8 (figure 6). As a result, the development of boundary-
layer disturbances for this case looks different from the other three cases with smaller
incident wave angles. Specifically, the development of mode I waves for case E.8



96 Y. Ma and X. Zhong

0 0.1 0.2 0.3 0.4 0.70.60.5
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1 – 1/M∞

1 + 1/M∞

x* (m)

LST (mode II)

a—u∞

LST (Mack modes)
LST (mode I)

entropy waves (θ∞ = 0°)

1

Figure 27. Distribution of phase velocities of boundary-layer disturbances due to free-stream
plane entropy waves (case E.5) and comparison with LST results (M∞ = 4.5, F = 1.6 × 10−4
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becomes unclear owing to the effect of the strong impingement of the fast acoustic
waves. For cases E.5 and E.6, there is a clear path of the generation and growth of
the second mode waves.

Figure 27 compares the phase velocities of case E.5 with those of the boundary-
layer normal modes obtained by LST calculations. In the region near the leading
edge (x∗ < 0.16 m), there are strong oscillations in numerical results for the phase
velocity curve centred near that of mode I waves from the LST results. Again, mode I
waves are generated by forcing fast acoustic waves first. The second mode waves are
generated afterward. Compared with figure 25, there is a better match between the
current simulation results and the LST results for the second-mode waves. From figure
26, it shows that the second mode waves begin to grow at x∗ ≈ 0.17 m (RF = 0.177)
for cases E.5 and E.6, which is close to the synchronization point between mode I and
the second-mode waves located at x∗ =0.2 m from the LST results. The second-mode
waves grow very rapidly before reaching the branch II neutral stability location.
After passing the branch II location, boundary-layer disturbances decay very rapidly
and die out in the region downstream (x∗ > 0.45 m). From the simulation results, the
second-mode branch II neutral points are located at x∗ = 0.272 m (RF = 0.2239) and
x∗ = 0.2745 m (RF = 0.2249) for the two cases of θ∞ = 0◦ and 22.5◦, respectively. These
values agree well with that of the LST prediction (RF = 0.2250). At the second-mode
branch II location, the amplitudes of the pressure perturbation are 1.2 × 10−5 for case
E.5 and 9.36 × 10−6 for case E.6.

The second mode waves are generated from mode I waves. It is natural to assume
that stronger mode I waves can generate stronger second mode waves. Figure 26
shows that the maximum amplitude of mode I waves for case E.7 (θ∞ = 45◦) is much
stronger than for cases E.5 and E.6 with lower incident angles (θ∞ =0◦ or θ∞ = 22.5◦).
However, for case E.7, the induced second mode waves are weaker. This is because
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the development of mode I waves is strongly affected by modulation with other
waves inside the boundary layer, such as acoustic waves, entropy waves and vorticity
waves. For different incident angles of free-stream entropy waves, the wave angles
of acoustic waves, entropy waves and vorticity waves inside the boundary layer are
different. Therefore, there are different modulations on mode I waves for different
incident angles, which lead to slower decay of mode I waves for lower incident angles
compared with the θ∞ = 45◦ case. The initial amplitude of the second mode waves
generated by mode I waves are much stronger for lower incident angles. When the
incident wave angle increases to θ∞ =45◦, mode I waves decay so fast that the initial
amplitude of the second mode generated by mode I waves becomes very weak and
the second-mode waves becomes unclear owing to modulation with other waves.
Meanwhile, there are clear mode II waves shown in the region downstream where
the second mode waves become stable and die out. The mode II waves reach their
peak amplitude at x∗ ≈ 0.5 m. For the case E.8 (θ∞ =67.5◦), there are neither clear
second-mode waves nor mode II waves in boundary-layer disturbances induced by
free-stream entropy waves. Distinctive second-mode waves are absent for cases E.7
and E.8 because the initial amplitudes of the generated second mode waves from
mode I waves near synchronization point between the second mode and mode I are
very weak. As a result, the second mode waves are modulated by other waves during
their propagation downstream. Although the second-mode waves are still amplified
owing to their unstable properties, they are not the dominant component of the
boundary-layer disturbances. From the previous discussions on case E.8, the wave
angles for the generated fast acoustic waves behind the shock in the region with
x∗ < 0.21 m shown in figure 6 are between 62.0◦ and 57.7◦. As a result, there is a
strong impingement of the generated fast acoustic waves on the wall surface, which
leads to strong pressure perturbations near the leading edge. Meanwhile, the resonant
interaction between the fast acoustic waves and the mode II waves, which is the main
mechanism for generation and growth of the mode II waves, becomes very weak
because there is much difference in phase velocity between the generated fast acoustic
waves with large wave angle and the mode II waves. Therefore, the induced mode II
waves by fast acoustic waves are not strong.

7.4. Free-stream entropy waves at frequency F = 2.2 × 10−4

Cases E.1 to E.4 are compared with cases E.5 to E.8 in order to study the effect
of frequency on the receptivity to free-stream entropy waves. Distributions of the
amplitudes of the pressure perturbations are shown in figure 28. Compared with the
results of F = 1.6 × 10−4, the basic shapes and trends of the amplitudes of the pressure
perturbations for different frequencies with the same incident wave angle are very
similar. Again, figure 28 shows clearly the generation and growth of the second mode
waves for the cases E.1 and E.2 with lower incident angles. The second-mode waves
are generated at about RF = 0.182 (x∗ = 0.095 m) from numerical results, which is
close to the value of RF = 0.177, for the cases of F = 1.6 × 10−4. The peak amplitudes
of the pressure perturbation at the second-mode branch II neutral stability point
(x∗ = 0.140 m for F = 2.2 × 10−4 or RF = 0.220) are 3.44 × 10−6 for case E.1, and
2.91 × 10−6 for case E.2. At θ∞ = 45◦, the receptivity of mode II waves is dominant
and the pressure perturbations reach a peak amplitude of 9.77 × 10−6 at x∗ = 0.272 m
(RF = 0.301), compared with the corresponding value of 8.6 × 10−6 at x∗ = 0.492 m
(RF = 0.308) for F = 1.6 × 10−4 with the same incident wave angle (figure 26). Again,
in terms of RF, the locations of the peak amplitude of the second-mode (or mode II)
waves are almost the same for both cases of different frequencies. As discussed
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Figure 28. Distributions of pressure perturbations on the wall due to free-stream plane
entropy waves for cases E.1 to E.4 (M∞ = 4.5, F = 2.2 × 10−4).

before, for the case of θ∞ =67.5◦, the development of boundary-layer disturbances
are strongly affected by the impingement of fast acoustic waves on the wall surface.
Consequently, the induced boundary-layer disturbances are neither dominated by the
second Mack mode waves nor dominated by the mode II waves.

7.5. Response coefficients

To quantitatively study the receptivity of the supersonic boundary layer to free-stream
entropy/vorticity waves, the response coefficient is redefined as

Kmode =
|p′

mode|
ε|p∞| , (20)

where |p′|mode is the maximum amplitude of pressure perturbations for a given wave
mode. For the second Mack mode, this maximum value is located at the branch II
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neutral stability point. Spatial Fourier analyses and band-pass filter windows described
in Ma & Zhong (2003b) are used to separate the second mode from other wave
modes in the simulation results. The response coefficients can be easily converted to
the branch I receptivity coefficient if divided by 5.2 and 10.6 for F = 2.2 × 10−4 and
1.6 × 10−4, respectively.

Response coefficients for the numerical results shown in figures 26 and 28 are
calculated based on (20). Figure 29 compares the response coefficients for eight test
cases of free-stream entropy waves at four different incident wave angles and two
different frequencies. From figures 26 and 28, mode II waves are clearly present for
cases of θ∞ = 45◦ only. Therefore, there are only two discrete points shown in figure
29 for the response coefficients of mode II waves with value KII = 0.84 and KII =0.96
for F =1.6 × 10−4 and F = 2.2 × 10−4, respectively. Figure 29 also shows that the
response coefficients of the mode I waves at different incident wave angles are close
to each other for cases of the two different frequencies, while the response coefficients
of the second Mack mode are much larger at lower frequency because the second
mode waves are more strongly amplified. With the increase of incident wave angles,
the response coefficients of mode I waves increase owing to stronger impingement
of the forcing acoustic waves on the wall surface. On the contrary, the response
coefficients of the second-mode waves decrease with the increase of the incident wave
angles because initial amplitudes of the second mode converted from mode I waves
decrease when incident wave angles increase.

7.6. Resonant interaction between entropy waves and mode I

As shown by the preceding discussions on the receptivity to free-stream entropy
waves at frequencies F = 2.2 × 10−4 and F = 1.6 × 10−4 with different incident wave
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angles, boundary-layer disturbances are mainly induced by fast acoustic waves, which
are generated at the oblique shock by the interactions between free-stream entropy
waves and the shock. Meanwhile, the interactions between free-stream entropy waves
and the shock also generated strong transmitted entropy waves behind the shock.
Based on Fedorov & Khokhlov (2001)’s theoretical prediction, mode I waves can be
excited directly by entropy waves near the synchronization point between entropy
waves and mode I waves. From figures 23, 25 and 27, the synchronization points
between entropy waves and mode I are located at x∗ =0.08052 m (or R = 761.4
and RF = 0.1675) and x∗ = 0.1532 m (or R = 1050.1 and RF = 0.1680) for frequencies
F =2.2 × 10−4 and F = 1.6 × 10−4, respectively. Therefore, the synchronization points
between the entropy waves and mode I waves in term of RF are almost a constant
with value equal to 0.168 for these two different frequencies. From eight test cases
shown in figures 26 and 28, for receptivity to free-stream entropy waves, mode I waves
are generated by fast acoustic waves in the region upstream of the synchronization
point between entropy waves and mode I waves. If mode I can be excited directly
by the entropy waves, the amplitudes of the mode I waves should be amplified by
resonant interactions between entropy waves and mode I waves in the vicinity of
the synchronization point. Therefore, resonant interaction between entropy waves
and mode I waves can be detected from the numerical results by the existence of
amplifications of mode I waves near the synchronization point.

In order to observe the existence of a resonant interaction between mode I waves
and the entropy waves, the region of generation and development of mode I waves
shown in figures 26 and 28 is enlarged and redrawn in figure 30. For both frequencies,
there is no significant amplification of boundary-layer disturbances shown near the
synchronization points between entropy waves and mode I waves. From our previous
study on the resonant interaction between fast acoustic waves and mode I waves
presented in Ma & Zhong (2003b), the resonant interaction depends on the incident
wave angles. However, there is no consistent growth in amplitudes of mode I waves
in the vicinity of the synchronization point between mode I waves and entropy waves
for different frequencies and different incident wave angles. In other words, there is
no clear evidence in the numerical solutions to show that there exists strong resonant
interaction between the mode I waves and the entropy waves. The lack of strong
resonant interaction can be explained by the phase velocity curves shown in figures 23,
25 and 27. It shows in these three figures that there are resonant interactions between
the mode I (or mode II) waves and the fast acoustic waves because the angle between
the phase velocity curves of mode I (or mode II) and the fast acoustic waves are small
near the initial location of the mode I (or mode II) waves. Therefore, there is a certain
local region where phase velocities of the mode I (or mode II) waves and the fast
acoustic waves are close to each other, which leads to a resonant interaction. However,
for the mode I waves and the entropy waves, although there is synchronization point
between the mode I waves and the entropy waves, the range of resonant interaction
between the mode I waves and the entropy waves is much smaller than in the cases
of fast acoustic waves.

8. Receptivity to planar free-stream vorticity waves
In this section, supersonic boundary-layer receptivity to planar free-stream vorticity

waves with different frequencies and different incident wave angles (cases V.1 to V.8)
are studied by numerical simulation.
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Figure 30. Generation and development of mode I waves near the leading edge for frequency
(a) F = 1.6 × 10−4 (cases E.5 to E.8) and (b) F = 2.2 × 10−4 (cases E.1 to E.4). Location of
synchronization point between entropy waves and mode I waves is marked by long dash line
in each plot (x∗ =0.1532m for F = 1.6 × 10−4 and x∗ = 0.08052m for F = 2.2 × 10−4).

8.1. Free-stream vorticity waves at frequency F = 1.6 × 10−4

As discussed in previous sections, the wave angles of the acoustic waves generated
behind the shock by free-stream vorticity waves are the same as those generated
by free-stream entropy waves if the incident wave angles are the same, although the
amplitudes of the fast acoustic waves are different. Figure 31 compares the amplitudes
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Figure 31. Distributions of pressure perturbations on the wall due to free-stream plane
vorticity waves for cases V.5 to V.8 (M∞ = 4.5, F = 1.6 × 10−4).

of pressure perturbations along the wall surface induced by free-stream vorticity waves
for cases V.5 to V.8. It shows that there is significant growth of pressure perturbations
in the region of 0.175 m<x∗ < 0.272 m. The dominant waves are identified as second
mode by comparing fluctuation profiles and phase velocities with the LST results.
Unlike the cases of receptivity to free-stream entropy waves, dominant second-mode
waves are generated for all four cases. This figure shows that ‘clean’ second mode
waves are generated in the region of 0.19 m < x∗ < 0.38 m for cases V.5 and V.6,
while there are some oscillations in the amplitudes of pressure perturbations in the
same region owing to a wave modulation between the second-mode waves and other
waves for cases V.7 and V.8. At the second-mode branch II neutral stability point
(x∗ = 0.272 m and RF = 0.2239), the peak amplitudes of the second-mode waves are
9.47 × 10−5, 8.14 × 10−5, 6.28 × 10−5 and 3.31 × 10−5 for the four cases V.5 to V.8,
respectively. With increasing incident wave angles, the receptivity of the second mode
to free-stream vorticity waves becomes dramatically weaker.

Figure 32 compares the amplitudes of pressure perturbations between cases E.5 and
V.5. Here, the amplitudes of pressure perturbations generated by free-stream entropy
waves is rescaled by a factor of 7.8 so that the maximum value of the pressure
amplitudes is the same as the corresponding maximum pressure perturbation induced
by free-stream vorticity waves. This figure shows that the development of boundary-
layer disturbances characterized by pressure perturbations are almost identical for
these two cases. Based on this observation, it appears that the same receptivity
mechanisms are involved in receptivity to free-stream vorticity waves and entropy
waves. The amplitudes of the generated fast acoustic waves at the shock for cases
E.5 and V.5 are compared in figure 10(b). It shows that the amplitudes of pressure
perturbations due to vorticity waves are almost twice as large as those due to
free-stream entropy waves. If boundary-layer disturbances are induced only by fast
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acoustic waves generated behind the shock, the amplitudes of pressure perturbations
on the wall induced by free-stream vorticity waves should be nearly twice those
induced by free-stream entropy waves. However, the simulation results show that the
maximum amplitude of pressure perturbations on the wall induced by free-stream
vorticity waves is about 7.8 times that induced by free-stream entropy waves. The
unexpected stronger receptivity for the case of free-stream vorticity waves may be due
to stronger interaction between boundary-layer disturbances and the vorticity waves
compared to the interaction between boundary-layer disturbances and the entropy
waves.

Similarly, figure 33 compares pressure perturbations on the wall between case E.7
and V.7. It shows that the same amplitudes of mode II waves are obtained in the region
x∗ > 0.4 m. This is because mode II waves are generated by resonant interactions with
fast acoustic waves. More importantly, about the same amplitudes of fast acoustic
waves with the same wave angles are generated behind the shock for cases E.7 and
V.7 with θ∞ = 45◦ from theoretical calculation, which has been shown in figure 9(b).
However, near the leading edge, there is a stronger interaction between vorticity waves
and boundary-layer disturbances compared with the case of free-stream entropy
waves. As a result, the initial amplitude of the second mode waves is much stronger for
vorticity waves than for free-stream entropy waves. The phase velocities of boundary-
layer disturbances of V.7 are compared with those of boundary-layer normal modes
obtained by LST in figure 34. The phase velocity distribution for the case of free-
stream vorticity waves is very similar to that for the case E.7 as shown in figure 25.
The only difference is that there are fewer oscillations in the phase velocity curve in
the region of 0.19 m <x∗ < 0.38 m for the case V.7 compared with E.7. This is because
the second mode waves generated by vorticity waves are dominant in this region.



104 Y. Ma and X. Zhong

0.1 0.2 0.3 0.4 0.5 0.6 0.70

5

6

4

3

2

1

7
(×10–5)

|p
′|/

p ∞

x* (m)

vorticity wave (θ∞ = 45°)

entropy wave (θ∞ = 45°)

Figure 33. Distribution of pressure perturbations due to free-stream plane vorticity waves
(case V.7) and comparison with that due to entropy waves (case E.7) (M∞ = 4.5, F = 1.6 × 10−4

and θ∞ = 45◦).

0 0.1 0.2 0.3 0.4 0.70.60.5
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1 – 1/M∞

1 + 1/M∞

x* (m)

a—u∞
1

LST (mode II)
vorticity waves (θ∞= 45°)

LST (Mack modes)
LST (mode I)

Figure 34. Distribution of phase velocities of boundary-layer disturbances due to free-stream
plane vorticity waves (case V.7) and comparison with LST results (M∞ = 4.5, F = 1.6 × 10−4

and θ∞ = 45◦).



Receptivity of a supersonic boundary layer over a flat plate. Part 3 105

From the above discussions, very similar receptivity mechanisms are involved in
the process of receptivity of supersonic boundary layer to free-stream vorticity and
entropy waves. Specifically, in receptivity to free-stream vorticity waves, boundary-
layer disturbances are mainly induced by fast acoustic waves generated at the shock
by the interaction between forcing free-stream vorticity waves and the oblique shock.
Therefore, the oblique shock plays a very important role in the receptivity process.
In addition, there is a very strong interaction between the transmitted vorticity waves
and boundary-layer mode I waves generated by fast acoustic waves. The second-mode
waves are converted from mode I waves afterward. As a result, dominant second-
mode waves are generated in all cases of vorticity waves of different incident wave
angles studied in this section. Meanwhile, the dominant second-mode waves are only
shown for lower incident wave angles (θ∞ = 0◦ and 22.5◦) in receptivity to entropy
waves.

8.2. Free-stream vorticity waves at frequency F = 2.2 × 10−4

In order to study the effects of frequency, a higher frequency of F =2.2 × 10−4 was also
considered. Figure 35 compares the distributions of pressure perturbations along the
wall surface for cases V.1 to V.4. Again, the generation and development of boundary-
layer disturbances shown in this figure are very similar to those shown in figure 31 for
the frequency of F =1.6 × 10−4. Dominant second-mode waves are generated for low
incident angle cases V.1 and V.2, while the second mode waves are strongly modulated
for the two cases V.3 and V.4 with higher incident angles. The differences between the
two frequencies are the amplitudes of boundary-layer disturbances and the branch II
neutral stability locations where the maximum amplitudes are reached. For the cases of
F = 2.2 × 10−4, the peak amplitudes of the second-mode waves at branch II neutral
point (x∗ =0.140 m and RF = 0.220) are 2.46 × 10−5, 2.06 × 10−5, 1.68 × 10−5 and
9.65 × 10−6 for cases V.1 to V.4, respectively. Again, with the increase of incident wave
angles, the receptivity of the second mode to free-stream vorticity waves decreases
dramatically. In addition, for different incident wave angles at F =1.6 × 10−4, the
peak amplitudes of the second-mode waves are about 4 times of those of the cases
of F = 2.2 × 10−4.

8.3. Response coefficients for receptivity to vorticity waves

Similar to the cases of free-stream entropy waves, (20) is used for quantitative analysis
on the receptivity of the supersonic boundary layer to free-stream vorticity waves.
Figure 36 compares the response coefficients induced by free-stream vorticity waves at
four different incident wave angles and two different frequencies. The response coef-
ficients are calculated according to the numerical results shown in figures 31 and 35.
Figure 36 shows that the second-mode receptivity is dominant at frequency F = 1.6 ×
10−4 with four different incident wave angles, while the receptivity of mode I is dom-
inant for the higher frequency of F = 2.2 × 10−4 for all different incident wave angles.
When the incident wave angles increase, the response coefficients of both mode I and
the second Mack mode decrease. This trend is different from the result of the response
coefficients for the cases of free-stream entropy waves shown in figure 29. Again, there
are only two discrete points shown in figure 36 for the response coefficients of mode II
waves with the same value KII = 0.84 for both F = 1.6 × 10−4 and F = 2.2 × 10−4. For
the second mode, the response coefficients can be easily converted to the branch I
receptivity coefficient if dividing by 5.2 and 10.6 for F = 2.2 × 10−4 and 1.6 × 10−4,
respectively.
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Figure 35. Distributions of pressure perturbations on the wall due to free-stream plane
vorticity waves for cases V.1 to V.4 (M∞ = 4.5, F = 2.2 × 10−4).

9. Discussions
The receptivity mechanisms of Mach 4.5 flow over a flat plate to free-stream slow

acoustic waves, entropy waves and vorticity waves have been studied by numerical
simulations. Boundary-layer normal modes induced by free-stream disturbances are
identified by comparing with LST results. The results are also compared with the
previously published results of the receptivity to free-stream fast acoustic waves (Ma &
Zhong 2003b).

The results show that the receptivity to free-stream slow acoustic waves follows
a different path from the receptivity to the other three types of free-stream wave.
For free-stream slow acoustic waves, Mack-mode waves are generated directly by
transmitted slow acoustic waves due to resonant interaction between the first-mode
waves and the slow acoustic waves. The receptivity mechanism to slow acoustic waves
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Figure 36. Response coefficients of the boundary-layer normal modes to free-stream
vorticity waves vs. incident wave angles for cases V.1 to V.8 (M∞ = 4.5).

is different from that to fast acoustic waves (Ma & Zhong 2003b). In the process of
receptivity to fast acoustic waves, there are two steps of resonant interactions. First,
stable mode I waves are generated by their resonant interaction with the forcing fast
acoustic waves in the leading-edge region. Secondly, the second Mack mode waves are
converted from stable mode I waves near their synchronization point. Because mode I
waves are inherently stable, the amplitudes of mode I waves are significantly reduced
before reaching their resonant interaction point with the second mode. Consequently,
for free-stream fast and slow acoustic waves with incident wave angles smaller than
45◦, the second-mode receptivity to free-stream slow acoustic waves are several times
stronger than that to free-stream fast acoustic waves.

On the other hand, the current study shows that the receptivity of the supersonic
boundary layer to free-stream entropy and vorticity waves is essentially similar to that
to free-stream fast acoustic waves. In other words, for these three types of free-stream
waves, the second mode waves in the boundary layer are generated by the two-step
resonant interaction process involving the stable mode I waves. This is because fast
acoustic waves are generated behind the shock. The generated fast acoustic waves
propagate downstream, enter the boundary layer, and excite boundary-layer wave
modes. Therefore, the interaction between the oblique shock and free-stream
entropy/vorticity waves plays a very important role in receptivity. Numerical
simulation on the generated fast acoustic waves at the oblique shock is compared
with McKenzie & Westphal’s (1968) theoretical results on linear interaction between
free-stream disturbances and an oblique shock. Good agreement is obtained in both
the wave angles and amplitudes of the generated fast acoustic waves. McKenzie &
Westphal’s linear theory is also used to analyse the receptivity mechanism of
entropy waves and vorticity waves. It is found that the receptivity to free-stream
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entropy/vorticity waves is mainly through the fast acoustic waves generated behind
the oblique shock. The entropy/vorticity waves first generate fast acoustic waves
from their interaction with the shock. In turn, the generated fast acoustic waves
induce boundary-layer disturbances through the same receptivity path as that of the
free-stream fast acoustic waves. The numerical results show that there is a significant
effect on the development of mode I waves from its modulation with other wave
components inside the boundary layer, such as acoustic, entropy and vorticity waves.
However, there is no clear evidence to show that there exists strong direct resonant
interaction between the mode I waves and the forcing entropy/vorticity waves, which
is different from Fedorov & Khokhlov (2001)’s theoretical prediction on excitation of
mode I waves by entropy/vorticity waves near their synchronization point.

The effects of incident wave angles on the receptivity are also studied. It is found
that the second-mode response coefficients always decrease with increasing incident
wave angles. In receptivity to free-stream entropy waves, the response coefficients of
mode I waves increase with increasing incident wave angles owing to the impingement
and reflection of the fast acoustic waves on the wall. In the receptivity to free-stream
vorticity waves, both the mode I and the second mode waves become weaker with
increasing incident wave angles. Numerical results also show that there is not much
effect on the receptivity of mode I waves from the change of frequencies, while there
is a significant increase in the response coefficients of the second mode for lower
frequency in receptivity to different types of free-stream disturbance.
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